Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 3 Solution

Exercise. Let S be an integral domain and let $a \in S$. Let R be a subring of S such that $S=R[a]$. Prove or disprove the following:
(a) If R is a principal ideal domain, then S is a principal ideal domain.

Solution.

False: $\mathbb{Z}[x]$ is an integral domain and $x \in \mathbb{Z}[x]$
\mathbb{Z} is a PID but $\mathbb{Z}[x]$ is not a PID.
Proof that \mathbb{Z} is a PID:
Let $I \subseteq \mathbb{Z}$ be an ideal of \mathbb{Z} and $m \in I$ be the smallest positive integer in I If $a \in I$ then

$$
\begin{array}{rlrl}
& & a & =b m+r \\
\Longrightarrow & a-b m & =r \in I & 0 \leq r<b \\
\Longrightarrow & r & =0 & \\
\Longrightarrow & I & =\langle m\rangle & \text { by choice of } m \\
& &
\end{array}
$$

Prove that $\mathbb{Z}[x]$ is not a PID:

$$
\langle 2, x\rangle=\{2 s+t x: s, t \in \mathbb{Z}[x]\} \quad \text { is an ideal of } \mathbb{Z}[x]
$$

$$
\text { If } \exists q \in \mathbb{Z}[x] \text { s.t. }\langle q\rangle=\langle 2, x\rangle \text { then } \exists r(x), s(x) \in \mathbb{Z}[x] \text { such that }
$$

$$
q(x) r(x)=2 \quad \text { and } \quad q(x) s(x)=x
$$

$$
q(x) r(x)=2 \quad \Longrightarrow \quad q(x)=1 \quad \text { or } \quad q(x)=2
$$

$$
\text { And } q(x) s(x)=1 \quad \Longrightarrow \quad q(x)=1 \quad \text { or } \quad q(x)=x
$$

$$
\Longrightarrow
$$

$$
q(x)=1
$$

BUT $\quad\langle 2, x\rangle \neq\langle 1\rangle \quad$ since $\quad 1 \notin\langle 2, x\rangle$

Thus, $\mathbb{Z}[x]$ is not a PID
(b) If R is noetherian, then S is noetherian. You may use major theorems in your justification as long as they are specifically mentioned.

Solution.

A Noetherian ring is a ring that sarsfies the ascending cahin on left and right ideals.
i.e. given any chain of left (or right) ideals

$$
I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{k-1} \subseteq I_{k} \subseteq I_{k+1} \subseteq \ldots
$$

$\exists n$ such that $I_{n}=I_{n+1}=\ldots$
This is true by Hilbert's Basis Theorem

